EARLY FLOWERING 4 functions in phytochrome B-regulated seedling de-etiolation.
نویسندگان
چکیده
To define the functions of genes previously identified by expression profiling as being rapidly light induced under phytochrome (phy) control, we are investigating the seedling de-etiolation phenotypes of mutants carrying T-DNA insertional disruptions at these loci. Mutants at one such locus displayed reduced responsiveness to continuous red, but not continuous far-red light, suggesting a role in phyB signaling but not phyA signaling. Consistent with such a role, expression of this gene is induced by continuous red light in wild-type seedlings, but the level of induction is strongly reduced in phyB-null mutants. The locus encodes a novel protein that we show localizes to the nucleus, thus suggesting a function in light-regulated gene expression. Recently, this locus was identified as EARLY FLOWERING 4, a gene implicated in floral induction and regulating the expression of the gene CIRCADIAN CLOCK-ASSOCIATED 1. Together with these previous data, our findings suggest that EARLY FLOWERING 4 functions as a signaling intermediate in phy-regulated gene expression involved in promotion of seedling de-etiolation, circadian clock function, and photoperiod perception.
منابع مشابه
Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation.
Different Arabidopsis phytochrome (phy) family members (phyA through phyE) display differential photosensory and/or physiological functions in regulating growth and developmental responses to light signals. To identify the genes regulated by phyB in response to continuous monochromatic red light (Rc) during the induction of seedling de-etiolation, we have performed time-course, microarray-based...
متن کاملSynergistic and Antagonistic Action of Phytochrome (Phy) A and PhyB during Seedling De-Etiolation in Arabidopsis thaliana
It has been reported that Arabidopsis phytochrome (phy) A and phyB are crucial photoreceptors that display synergistic and antagonistic action during seedling de-etiolation in multiple light signaling pathways. However, the functional relationship between phyA and phyB is not fully understood under different kinds of light and in response to different intensities of such light. In this work, we...
متن کاملMolecular interaction of jasmonate and phytochrome A signalling.
The phytochrome family of red (R) and far-red (FR) light receptors (phyA-phyE in Arabidopsis) play important roles throughout plant development and regulate elongation growth during de-etiolation and under light. Phytochromes regulate growth through interaction with the phytohormones gibberellin, auxin, and brassinosteroid. Recently it has been established that jasmonic acid (JA), a phytohormon...
متن کاملEarly Developmental Responses to Seedling Environment Modulate Later Plasticity to Light Spectral Quality
Correlations between developmentally plastic traits may constrain the joint evolution of traits. In plants, both seedling de-etiolation and shade avoidance elongation responses to crowding and foliage shade are mediated by partially overlapping developmental pathways, suggesting the possibility of pleiotropic constraints. To test for such constraints, we exposed inbred lines of Impatiens capens...
متن کاملInvolvement of rice cryptochromes in de-etiolation responses and flowering.
In order to elucidate the function of cryptochromes (cry) in rice, we have characterized all rice CRY genes, including OsCRY1a, OsCRY1b and OsCRY2. Our studies revealed that OsCRY1 genes were mainly expressed in the green plant tissue, while OsCRY2 gene expression was high in the coleoptile, flower and callus. Light treatment affected neither the expression of any of the OsCRY genes nor the sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 133 4 شماره
صفحات -
تاریخ انتشار 2003